Matching Rectangles in d - Dimensions : Algorithms and Laws of Large Numbers

نویسندگان

  • R. DARLING
  • S. WATERMAN
چکیده

For each point of the integer lattice Zd, let X and Y be independent identically distributed random variables with P(X = Y) = p E (0, 1). Let S(n) be the volume of the largest d-dimensional cube in ( I , ..., n t d with the property that X = Y at every point of the cube; R ( n ) is similarly defined to be the maximum volume of perfectly matching rectangles. It is proved that, if all possible shifts of the X lattice relative to the Y lattice are allowed, P(limm-,m S(n)/log n = limn+m R(n)/ log n = 2 4 = 1, where log is to base (l/p). The corresponding limit without shifts is d. Algorithms to find largest squares and rectangles, with and without shifts, are also given. @ 198s Academic P n s . Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laws of Large Numbers for Random Linear

The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...

متن کامل

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.

متن کامل

Two Dimensional Matching 10.1 Exact Matching

String matching is a basic theoretical problem in computer science, but has been useful in implementating various text editing tasks. The explosion of multimedia requires an appropriate generalization of string matching to higher dimensions. The rst natural generalization is that of seeking the occurrences of a pattern in a text where both pattern and text are rectangles. The last few years saw...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1985